Page 86 - TequioVol1No2
P. 86
84 Fibrogénesis hepática /Ildefonso et al./79-84
L., Marzioni, M., Benedetti, A. y Svegliati-Baroni, Malarkey, D. E., Johnson, K., Ryan, L., Boorman,
G. (2012). Endoplasmic reticulum stress induces G. y Maronpot, R. (2005). New insights into
hepatic stellate cell apoptosis and contributes to functional aspects of liver morphology. Toxicol
fibrosis resolution. Liver International, 32(10), Pathology. 33, 27-34.
1574-84.
Novo, E., Cannito, S., Paternostro, C., Bocca, C.,
De Oliveira, S., Ramos, L. y Morales, K. (2017). Miglietta, A. y Parola, M. (2004). Cellular and
Molecular interplays in hepatic stellate cells:
apoptosis, senescence, and phenotype reversion molecular mechanisms in liver fibrogénesis. Archives
as cellular connections that modulate liver fibrosis. of Biochemistry and Biophysics, 548, 20-37.
Cell Biology International, 41, 946-959.
Sahin, H., Trautwein, C. y Wasmuth, H. E. (2010).
Fausto, N., Campbell, J. S. y Riehle, K. J. (2006).
Liver regeneration. Journal of hepatology, Functional role of chemokines in liver disease
43(2S), 45-53. models. Nature reviews Gastroenterology &
Hepatology, 7(12), 682-690.
Friedman, S. L. (2004). Stellare cells. A moving
target in hepatic fibrogenesis. Hepatol., 40, 1041-
1043. Schindlera, C. y Plumleec, C. (2008). Inteferons
pen the JAK-STAT pathway. Seminars in Cell &
Friedman, S. L. (2008). Liver Fibrosis from bench to Developmental Biology. 19, 311-318.
bedside. Journal of hepatology, 38(15), 38-53.
Fujiyoshi, M. y Osaki M. Molecular mechanisms of Senoo, H. (2004). Structure and function of hepatic
liver regeneration and protection for treatment stellate cells. Med Electron Microsc., 37, 3-15.
of liver dysfunction and diseases. (2011). J
Hepatobiliary Pancreat. Sci., 18(1), 13-22.
Rao V., Klein, S. R., Bonar, S. J., Zielonka, J. y
Garzon, R., Marcucci, G. y Croce, C. M. (2010). Mizuno, N. (2010). The Antioxidant Transcription
Targeting microRNAs in cancer: rationale, strategies Factor Nrf2 Negatively Regulates Autophagy
and challenges. Nature reviews, 9(10), 775-789. and Growth Arrest Induced by the Anticancer
Redox Agent Mitoquinone. Journal of Biological
Gressner, A., Weiskirchen, R., Breitkop, K. y Dooley
S. (2002). Roles of TGF-beta in hepatic fibrosis. Chemistry, 285(45), 34447-34459.
Frontiers in bioscience: a Journal and virtual
library, 7(6), 62-76 Teixeira-Clerc, F., Belot, M. P., Manin, S. y
Deveaux, V. (2010). Beneficial paracrine effects
Gulsum, O. (2014). Cellular and molecular
mechanisms in the pathogenesis of liver fibrosis: of cannabinoid receptor 2 on liver injury and
An update. World Journal of Gastroenterology, regeneration. Hepatology, 52(3), 1046-1059.
20(23), 7260-7276
Weiskirchen, R. y Tacke, F. (2014). Cellular and
Hernández, V. y Friedman, S. L. (2011). molecular functions of hepatic stellate cells in
Phathogenesis of liver fibrosis. Annu. Rev. Pathol. inflammatory responses and liver immunology.
Mench. Dis., 6, 425-456. Hepatobilliary Surgery and Nutrition, 3(6), 344-363.
Krasilvnicov, M. A. (2000). Phosphatidylinositol-3 Wells, G. B. (2008). Structural answers and
Kinase Dependent Pathways: the role in Control of persistent questions about how nicotinic
Cell Growth, Survival, and Malignant. Biochemistry, receptors work. Frontiers in bioscience: a journal
65, 59-67. and virtual library, 13, 5479-5510.
Tequio, vol. 1, no. 2, enero-abril, 2018